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Abstract—The behavior of strain-softening structures in relation to their overall load-displacement
response is examined as a stability problem of the global system. The prototype structure studied
is the simple beam under three, four and five-point bend. It is demonstrated that fracture problems
do not require geometric or material nonlinearity to produce instability—the size and shape of a
structure that fails by fracture are the important factors that control the system. In addition,
some geometries, for example the four and five-point-bend beams, may develop different crack
configurations such that a bifurcation in the global equilibrium of the structure is possible. Experi-
ments and analyses indicate that size, slenderness, constraint and symmetry of the deformed beam
must be considered in predicting the post-failure response.

1. INTRODUCTION

As is now well documented by test results (Wawersik and Fairhurst, 1970 ; BaZant, 1976;
Vardoulakis, 1980), strain softening is a characteristic displayed in several materials such
as rock, concrete and dense soil. Softening is usually associated with a zone of localized
deformation ; inside the zone a decrease in stress is accompanied by an increase in strain,
while outside the zone the strain decreases (Labuz ef al., 1985). When softening is involved
with a structural component, a snap-back “instability’”” may occur, with the post-failure
response taking on a positive slope (Berry, 1960 ; Cook, 1965 ; Maier, 1968 ; BaZant, 1976;
Schreyer and Chen, 1986).

Usually, the stability of a mechanical system is connected with a monotonous load-
displacement response; in this sense, softening is always associated with instability. For a
softening structure, however, it is possible to observe

(a) stable softening or simply “stability”, if the load-displacement response in the
post-peak regime is always characterized by a negative slope [Fig. 1(a)];

(b) unstable softening or simply ““instability”, if the softening branch takes on, at least
in part, a positive slope [Fig. 1(b)].

The critical situation, which is the separation threshold between stability and instability,
corresponds to a reduction of the load-carrying capacity at constant displacement [Fig.
1(c)].

One of the first attempts to incorporate softening behavior into an analysis of a beam
was Wood’s paradox (Wood and Roberts, 1966; Wood, 1968). Basically, Wood showed
that one could not explain within a classical formulation how strain softening could spread
from the midspan point into a segment of finite length. Inspired by this work, Maier (1968)
proposed to describe the elastic behavior in terms of a local generalized-strain variable—
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Fig. 1. Global response of elastic-softening structures : (a) stable; (b) unstable; and (c) critical.
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Fig. 2. Uniaxial tensile test on granite.

the curvature—and the softening behavior in terms of a nonlocal generalized—strain
variable—the rotation of a plastic hinge. Later, Bazant (1976) pointed out that a local
constitutive theory inevitably leads to a softening zone of negligible thickness and zero
energy dissipation, whereas neither feature is supported by experimental evidence. Ottosen
(1986), on the basis of a thermodynamic consideration for a simple unidirectional problem,
proved that the width of the localization zone must decrease to zero, thereby violating the
classical definition of strain.

To predict a softening zone of finite thickness, a nonlocal constitutive equation must
be postulated (Schreyer, 1990). One such approach is through the introduction of ideas
typical in fracture mechanics, namely, fracture energy and a characteristic length. For
instance, an elastic—plastic constitutive law can be adopted for the local strain components,
while the softening behavior can be described in terms of a stress—crack opening relation
(Hillerborg et al., 1976 ; Bazant and Chang, 1987 ; Carpinteri, 1989).

Shown in Fig. 2 is a typical result from three tensile tests performed on a softening
material—granite-—using the double-edge-notched specimen under displacement control.
In uniaxial tests on rock, the deformation begins to localize in the hardening regime, and
the stress field becomes a combination of pure tension and bending. Nonetheless, the post-
peak displacements are attributed to an average crack opening, such that the constitutive
relation of the localized-fracture zone is given by the post-peak response (Labuz et al.,
1985).

The objective of this work is to demonstrate that fracture problems do not require
geometric or material nonlinearity to produce instability—the size and shape of a structure
that fails by fracture are the important factors that control the system. Closed-loop tests
were conducted to record the global response of strain-softening beams. The experiments
were analysed by considering the displacements in the elastic and inelastic (fracture) states.
In particular, it will be shown that to study the problem of beams in flexure when the
slenderness is varied, it is fundamental to consider the two-dimensional effects of load
diffusion at the load points and reactions. Furthermore, size, constraint and symmetry of the
deformed structure pose additional effects that have yet to be experimentally investigated.
Although experiments and analyses were conducted on beams, the conclusions are general
in a sense that all structures which soften due to crack growth exhibit “brittleness™.

2. EXPERIMENTAL APPARATUS

The phenomenon of strain softening can be studied in the laboratory only within a
closed-loop system (Fig. 3), where the feedback signal is adjusted to coincide with the
desired program independent of the specimen and machine. Conventional load-prescribed
testing machines cannot be used to capture the post-peak response. For this reason the
notion of “brittle” behavior is sometimes associated with strain-softening materials, as
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Fig. 3. Closed-loop testing system.

complete load-carrying capacity is lost after reaching maximum load in a dead-load system
(Glucklich and Cohen, 1967 ; Hudson et al., 1972).

With a displacement-controlled or “hard” device, it is possible to follow the softening
response, regardless of machine stiffness, if the feedback signal is a monotonously increasing
function with time (Hudson et al., 1972 ; Cangiano and Tognon, 1990). The displacement
that satisfies this condition for a bend test is due to crack opening and not the deflection
of the load point, which can be affected by the energy stored in the structure and machine.

The influence of machine stiffness (Salamon, 1970 ; Cooper, 1977 ; Sture and Ko, 1978)
on the post-peak response as measured by the load-point displacement can be illustrated
by considering a rotation of the load axis, such that a stable response may show up as an
instability (Fig. 4). The actual behavior is masked by an added contribution from the
machine. This effect, as well as crushing at the contacts, can be eliminted by the measurement
of a displacement relative to points directly above the supports (Bush, 1976). Note that a
snap-back instability can still appear within an infinitely stiff machine when considering the
load-point displacement.

Closed-loop fracture experiments were conducted in a 1 MN load frame using the
displacement across a sawn notch as the feedback signal. A strain-gage based transducer
monitored this so-called crack mouth opening displacement, which was programmed to
increase at a rate of 2 x 10~ * mm s~ '. Two linear variable differential transformers, LVDTs

¥ = arccot K™
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Load

Displacement

Fig. 4. Actual behavior and system behavior (machine and specimen) ; K™ is machine stiffness.
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Table 1. Mechanical properties of the granite

,[MPa] E [GPa) v G [kNm~

8.2 31 0.24 0.24

with a linear range of 2.5 mm, were fastened symmetrically in the centerline of the beam to
measure the (differential) load-point displacement. Test control and data acquisition were
provided by a microcomputer. The specimen geometries were beams in three-point bending
with simple support and with one redundant support (a five-point-bend test), and in four-
point bending with symmetric and nonsymmetric crack configurations. At least three tests
were performed for each condition.

The typical behavior of the material (granite) is illustrated in Fig. 2, and the mechanical
properties are reported in Table 1. The elastic constants were evaluated by the active seismic
technique with a P-wave analyser. The fracture energy was calculated from the uniaxial
tensile tests (Fig. 2), whereas that provided by the classical three-point-bend configuration
was larger. This probably is attributable to the additional energy dissipated by micro-
cracking and crushing, which in a bend test, may produce a strong dependence on the
specimen size and notch depth (Tognon and Cangiano, 1989).

3. INSTABILITY

To consider the instability of softening systems, experiments were performed with the
three-point-bend configuration, a simple geometry characterized by a well-defined crack
path. The behavior for beams of a given cross-section (50 mm height and 50 mm thickness)
but different lengths is illustrated in Fig. 5. The global response ranges from instability for
the short span, to stability, and back to instability for the slender beam. Consequently, the
softening behavior that can be observed in an elastic-softening structure is not an essential
material property, but rather a structural response.

Figure 6 shows the behavior of specimens that are geometrically similar. The beams
exhibit a qualitative behavior evidently different : softening with an increase in displacement
associated with a decrease in applied load for the smaller specimen (a stable condition) and
amore brittle response in the larger specimen (an unstable condition). This is a manifestation
of the so-called size effect, a factor of fundamental importance when laboratory experiments,
carried out on small elements, are extrapolated to real structures of considerable size
(Bazant, 1984).
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Fig. 5. Global response of short, intermediate, and long span beams of the same height.
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Fig. 6. Global response of two geometrically similar beams of different sizes.

The stability of the three-point-bend configuration may be analysed by considering the
total displacement at the load-point application. The results that will be obtained for this
beam hold for nonredundant beams with different constraints (for example, a cantilever
beam). In addition, the present analysis can be applied to other geometries such as a beam
in four-point bending, which will be considered later.

The total displacement v' in a generic loading step is due to elastic +° and inelastic
(fracture) o' displacements from the beam and possibly a component due to the machine

vm.

vt =v+oi+o™ )

If F is the load applied to the beam by the testing machine, the elastic part may be
represented by

v¢ = F{L*/(48EI)+xL(1+v)/QQEBT)+[5/(ET) +0.2L/(EBT)]}, )

where E is Young’s modulus, v is Poisson’s ratio, k is the form factor, L is the length, B is
the height, T is the thickness, and 7 is the moment of inertia. The third term is due to the
diffusive nature of the point loads and is a good approximation if the length of the beam
is greater than 2B (Dischinger, 1932); a similar expression is reported in Timoshenko and
Goodier (1970). With K™ denoting the machine stiffness per specimen thickness, the last
term in (1) is

v™ = FT/K™. 3)

The inelastic part is due to the formation of a fracture zone, which is assumed to be fully
developed at the peak load. Several observations reinforce the validity of this simplifying
assumption: (1) Fig. 7(a) shows the strain at the midspan measured during a three-point-
bend test at peak load ; the strain distribution is strongly nonlinear, suggesting the existence

of a stress concentrator. (2) A fracture strain of 300 x 10~ ¢ has been recorded from uniaxial
tension tests, so that the values of strain from the beam indicate that a fracture zone is

(a) (b) (c)
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Fig. 7. (a) Measured-strain distribution ; (b) hypothesized stresses ; and (c) limit situation.
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already present. (3) Localization is observed optically before peak load. Based on the
measured strain data, the stress distribution is hypothesized to be that shown in Fig. 7(b).

A further idealization is to model the fracture as a cohesive zone (Dugdale, 1960
Barenblatt, 1962 ; Palmer and Rice, 1973), with a first order approximation of the closing
stress being described by a linear function

o = o1 -w/w). (4)

Obviously, the cohesive-zone representation of the fracture process is not limited to rock-
like materials, but can be applied to metals where the plasticity is confined to the crack
plane.

From geometrical considerations, the displacement »® can be written as

o' = [GiLB/(20)][1 —0/a)], (5a)

if the crack opening w in the lower part of the beam is less than or equal to the critical
opening w,, and

vf = GiLx/(20), (5b)

if the crack opening is greater than the critical opening w. ; x is the depth of the cohesive
zone, and from (4), the fracture energy per unit crack extension is G; = g,w,/2.

At the limit load, the fracture zone is approximated as being distributed over the full
height of the beam [Fig. 7(c)]. If instead of the load the stress from elementary beam theory
is introduced, (1) may be written

v' = [6B/EJ[A*/6+ k(1 +v)/3+2(5+0.20)/(34) + 2TE/(BAK™) — G:EA/(262B)],  (6)

where 4 = L/Bis the slenderness of the beam. The incremental stability condition for critical
softening is

dv'/de = 0, (7)
s0 (6) then reduces to
f() = GiE/(a!B), ®)

where f(A) = A/3+2xk(1+v)/(34) +[4(5+0.24)/3+4TE/(3K™)]/A*>. A different “global”
stability criterion may be derived by comparing the total elastic energy stored in the beam
and the machine with the fracture energy dissipated in the cohesive zone. In this case, we
get a stability condition that is four times more restrictive in that an incremental snap-back
may appear, but globally it would not be predicted (Labuz and Biolzi, 1991).

The right-hand side of (8) is sometimes referred to as a brittleness number (Cherepanov,
1979), and in some sense plays the same role as slenderness in elastic stability theory. For
a given material with constant properties, a size dependence appears through the height
(B) scale, which means that an instability would be observed when the specimen is above
a critical size, as illustrated by the experiments (Fig. 6). This is a natural consequence of
the mismatch in the elastic energy stored per unit of volume and the fracture energy
dissipated per unit of area (Palmer and Rice, 1973), and holds for any type of elastic-
softening fracture system.
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Fig. 8. Slenderness function f(4).

In addition to the size scale (for a given load configuration), the post-peak response is
governed by the geometry, or in the case of a beam, the slenderness. Figure 8, a plot of the
function f(1) assuming a Poisson’s ratio of 0.24, reveals that a beam has two values of
slenderness (2.5 < A < 6) between which the load-displacement response is stable. Experi-
ments (Fig. 5) confirm that for both high and low slenderness, the beam behaves in an
unstable manner. This result is general and holds for all nonredundant beams with various
constraints. Therefore, if the solutions to (8) are real, two values of slenderness define the
stable range of the softening response for a given geometry and load configuration.

The influence of machine stiffness is also shown in Fig. 8. For a stiff (100 MN m~")
load frame, the stability is affected only for beams of low slenderness (4 < 6). As the stiffness
of the testing machine is reduced, the critical curve is shifted up and to the right, such that
the post-peak response of a stubby beam becomes influenced by the machine. Consequently,
if the measurement of the load-point displacement includes the deformation of the load

frame, a system instability may be displayed (Fig. 4) when in fact the response of the beam
is stable.

4. BIFURCATION

In the three-point-bend configuration, the crack pattern is well defined. This is not
true, however, if a four-point-bend specimen (Fig. 9) where, due to loading and geometric

Fig. 9. (a) Four-point-bend beam ; (b) symmetric; and (c) nonsymmetric failure modes.
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Fig. 10. Global response of the nonsymmetric (1) and symmetric (2) four-point-bend beams.

symmetry, we may have two cracks contributing to the system response. The post-peak
behavior will be governed by whether the beam collapses in a symmetric or nonsymmetric
manner. So, when the structure presents the possibility of two or more cracks developing
simultaneously, a bifurcation of the load path in the softening regime may occur.

Figure 10 illustrates the load-displacement behavior recorded for a four-point-bend
geometry in the nonsymmetric (curve 1) and symmetric modes (curve 2). In the first case,
for the beam with a crack below only one of the load points, the failure process does not
demand additional external work ; the energy stored in the elastic phase of the beam is more
than sufficient to drive the fracture. Conversely, with a symmetric cracked configuration,
it is necessary to supply the fracturing process with additional work. Therefore, the four-
point-bend beam may fracture in a nonsymmetric mode with the necessity of extracting
energy from the structure, while in the symmetric case the system requires an input of
energy to cause failure.

In order to predict the actual response, the second-order work must be examined
{Maier et al., 1973 ; Nemat-Nasser et al., 1980 ; BaZant, 1989). If 6F denotes the variation
of the load associated with a small incremental displacement dv, the stable path that starts
at a bifurcation point is characterized by the condition that the second-order work 6*W,

W = 0.5(6F)(9v), €)
is a minimum.
For a comparison among two or more possible situations, it is convenient to write
8*W introducing the so-called tangent stiffness :
k. = (6F)/(dv). (10)
In this way (9) can be written
W = 0.5k, (ov). (11)
Alternatively, the second-order complementary work 6°W* can be used:
SXW* = 0.5(6F) ki, (12)

and the actual response is characterized by its maximum value (Bazant, 1989).
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Fig. 12. Experimental scheme to enforce a symmetric failure mode in the four-point-bend beam.

Figure 11 is a schematic of three different cases that have been recorded experimentally.
By considering (9) or {12), it can be verified that the nonsymmetric response is the preferred
one, as is recorded in the tests. For example, Fig. 11(b) depicts the situation observed in
the four-point-bend tests (Fig. 10). Referring to (12), we see that for the same variation the
maximum value of §°W* is governed by the tangent stiffness k.. For the nonsymmetric case
k. is positive, whereas k, is negative in the symmetric failure mode. Similar arguments can
be applied to Figs 11(a) and 11(c).

The actual post-peak behavior of the structures illustrated in Fig. 10 is characterized
by one crack only. The symmetric crack configuration is experimentally impossible to
obtain with conventional apparatus. It can be simulated, however, through an experimental
stratagem (Fig. 12) by considering one half of the structure, such that symmetry of the
displacements is enforced, even into the post-peak region. This problem has been analysed
by Chen and Maier (1992).

5. DISCUSSION

The stability analysis already presented can be repeated for the nonsymmetric, four-
point-bend configuration (4PB), with the following result
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f*() = GE/(6}B), (13)

where f**8(1) = 54/9+ k(1 +v)/A+[(8.84+0.30) +4TE/(3K™)}/A% If the left-hand side of
(13) is compared with the analogous relation (8) for the three-point-bend (3PB) geometry,
then for every 4 one finds f**®(1) > f(4). Thus, the set of slenderness values for stable
softening is larger in a 3PB specimen, making it more stable. This is a direct consequence
of the greater capacity of the 4PB beam to store elastic energy before collapse ; for example,
the displacements at the peak load for the 4PB specimen (Fig. 10) are larger than that for
the 3PB (Fig. 5). However, the most stable configuration (for a given height) out of the
3PB, nonsymmetric 4PB, and symmetric 4PB is the latter because it dissipates twice the
fracture energy. Experiments confirm this assertion, even though two cracks do not appear
in an actual 4PB test.

Equation (8) or (13) may be solved for the height B to demonstrate that for a given
structural geometry composed of a rock-like material, there exists a critical size-scale
characterized by perfectly brittle behavior [Fig. 1(c)]. In this case, relatively small dis-
placement increments correspond to a drastic decrease in load-carrying capacity. Physically,
the critical condition is that for which all the potential elastic energy supplied to the beam
in the loading phase is dissipated in the fracture process. The displacement due to elastic
deformation along the beam is transformed into inelastic opening within the localized crack.
Furthermore, for a given load configuration, a critical value of the brittleness number
G:E/(c? B) appears for which it is possible to observe a snap-back instability only, whatever
the slenderness of the structure.

The next level of complication in terms of the simple beam is to provide a single degree
of redundancy [Fig. 13(a)]. Again, an experimental stratagem to replicate this condition,
in terms of the first instability, is to use a five-point-bend (SPB) beam loaded in the middle
of the two spans [Fig. 13(b)]. The 3PB beam with one redundant support and the 5PB
beam are not equivalent, however, in terms of the total system response. A nonsymmetric
crack configuration will appear in the 5PB beam, as predicted by the minimum value of the
second-order work §°W.

The results from these tests are shown in Fig. 14. We can observe that the beams with
“one redundant support”, that is the SPB beams, showed two softening branches—the first
due to fracture at the middle support (the fixed end) and the second caused by crack
initiation below only one of the load points. The addition of one constraint produces the
structural response with an additional softening branch. Furthermore, a structure with »-
redundant constraints will exhibit at most n+ 1 softening branches, as suggested by Bazant
et al. (1987) and recorded by Biolzi and Labuz (1989). Some of them, as in the case of
structures with geometric and loading symmetries, theoretically may overlap each other,
but material or geometric imperfections will prevent this.

For the tested load configuration, the SPB beam, the first softening branch is due to
the cracking of the upper portion at the central support. A bifurcation develops at the peak

(b) F

NN

o

Fig. 13. Redundant systems.
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Fig. 14. Global response of three-point-bend beams with simple support (a) and one redundant
support (b).

of the second softening branch, because one or two cracks are possible in the lower fiber
below the load points. Experiments and 62W suggest that only one crack will appear, so
that the equivalence between the simple beam with one fixed end and the continuous beam
is lost. If we consider a load configuration for the 5SPB beam that produces the first crack
below one of the external loads, the bifurcation point is shifted to the first peak load. The
nonsymmetry of the deformed structure is then apparent within the first post-peak region.

6. CONCLUSIONS

The qualitative behavior of various beams was examined through a nonlinear model
that considers the cohesive interaction of the fracture. Experiments support the use of a
cohesive-zone representation, because for this material (granite), the main energy sink is
due to the localized process zone within the main crack. Fracture tests and analyses suggest
that it is not possible to define a structural brittleness in flexure without considering the
influence of slenderness and load geometry; in fact, two values of slendeness define the
stable range of softening. Machine stiffness may mask the global response of the specimen.
This effect can be eliminated by using a differential measure of the load-point displacement,
although a closed-loop system with the proper feedback signal is still needed to capture the
instability ; then, machine stiffness is not important.

For systems that fail due to crack propagation, the instability in the load-displacement
response is a function of the size and shape of the structure, together with the mechanical
properties of the material. When it is possible to have different crack configurations of the
structure, a bifurcation of the global equilibrium may appear. Both experiments and the
minimum value of the second-order work suggest that for the four and five-point-bend
tests, the nonsymmetric failure mode is preferred.

In summary, fracture as a stability problem has an analogy with classical elastic
stability. Both are characterized by instability and bifurcation phenomena, as well as
nondimensional parameters—slenderness and brittleness.

Acknowledgements—Partial support from the National Science Foundation, grant number MSS-9109416 (pro-
gram director K. P. Chong) and the Italian MURST is gratefully acknowledged. Special thanks are due to MTS
Systems Incorporated (Minneapolis, Minnesota) and S. L. Crouch for providing the opportunity for L. Biolzi to
visit the Department of Civil & Mineral Engineering of the University of Minnesota in Fall 1991 through the
MTS Geomechanics Chair.

REFERENCES

Barenblatt, G. I. (1962). The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech. 7,
55-129.



370 L. BioLzi and J. F. LaBUZ

Ba3i§mt, Z.P. (1976). Instability, ductility and size effect in strain softening concrete. J. Engng Mech., ASCE 102,

1-344.

BazZant, Z. P. (1984). Size effect in blunt fracture: concrete, rock, metal. J. Engng Mech. ASCE 110, 518-535.

BaZant, Z. P. (1989). Stable states and stable paths of propagation of damage zones and interactive fractures. In
Cracking and Damage (Edited by J. Mazars and Z. P. BaZant) pp. 183-206. Elsevier, Amsterdam.

BaZant, Z. P. and Chang, T. P. (1987). Nonlocal finite element analysis of strain softening solids. J. Engng Mech.
ASCE 113, 89-105.

BazZant, Z. P., Pijaudier-Cabot, G. and Pan, J. (1987). Ductility, snapback, size effect, and redistribution in
softening beams or frames. J. Struct. Div. ASCE 113(12), 2348-2364.

Betry, J. P. (1960). Some kinetic considerations of the Griffith criterion for fracture—1. Equations of motion at
constant force. J. Mech. Phys. Solids 8, 194-206.

Biolzi, L. and Labuz, J. F. (1989). Structural behavior of strain-softening beams. Proc. Int. Conf. Recent
Developments in Fracture of Concrete and Rock, Cardiff, U.K. pp. 693-700. Elsevier, London.

Bush, A. 1. (1976). Experimentally determined stress-intensity factors for single-edge-crack round bars loaded in
bending. Exp. Mech. 249-257.

Cangiano, S. and Tognon, G. (1990). The ductile/brittle transition in concrete beams in relation to servo-controlied
system of the testing machine. Engng Fract. Mech. 35(4/5), 793-799.

Carpinteri, A. (1989). Decrease of apparent tensile and bending strength with specimen size: two different
explanations based on fracture mechanics. Int. J. Sofids Structures 25, 407-429.

Chen, Z. and Maier, G. (1992). Bifurcation and instability in fracture mechanics of cohesive-softening media by
boundary elements. Fatigue Fract. Engng Mater. Struct. (in press).

Cherepanov, G. P. (1979). Mechanics of Brittle Fracture. McGraw-Hill, New York.

Cook, N. G. W. (1965). The failure of rock. Int. J. Rock Mech. Min. Sci. 2, 389-402.

Cooper, G. A. (1977). Optimization of the three-point bend test for fracture energy measurement. J. Mat. Sci.
12(1), 277-289.

Dischinger, F. (1932). Beitrag zur theorie der halbscheibe und des wandartingen balkens. .V.B.H. Erster Band,
63-93,

Dugdale, D. S. (1960). Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8, 100-104.

Glucklich, J. and Cohen, L. J. (1967). Size as a factor in the brittle—ductile transition and the strength of some
materials. /nt. J. Fract. Mech. 3, 278-289.

Hillerborg, A., Modeer, M. and Petersson, P. E. (1976). Analysis of crack formation and crack growth in concrete
by means of fracture mechanics and finite elements. Cement Concrete Res. 6, 773-787.

Hudson, J. A., Crouch, 8. L. and Fairhurst, C. (1972). Soft, stiff and servo-controlled testing machines: a review
with reference to rock failure. Engng Geol. 6, 155-189.

Labuz, J. F. and Biolzi, L. (1991). Class I vs Class 1 stability: a demonstration of size effect. Int. J. Rock Mech.
Min. Sci. Geomech. Abstr. 28(2/3), 199-205.

Labuz, J. F, Shah, S. P. and Dowding, C. H. (1985). Experimental analysis of crack propagation in granite. Int.
J. Rock Mech. Min, Sci, Geomech. Abstr, 22, 85-98.

Maier, G. (1968). Sul comportamento flessionale instabile nelle travi inflesse elasto-plastiche. Rendiconti Ist
Lombardo di Scienze ¢ Lettere, A 102, 648-677.

Maier, G., Zavelani, A. and Dotreppe, J. C. (1973). Equilibrium branching due to flexural softening. J. Engng
Mech. ASCE 99, 897-901.

Nemat-Nasser, S., Sumi, Y. and Keer, L. M. (1980). Unstable growth of tension cracks in brittle solids. /nt. J.
Solids Structures 16(11), 1017-1035.

Ottosen, N. S. (1986). Thermodynamic consequences of strain softening in tension. J. Engng Mech ASCE 112,
1151-1164.

Palmer, A. C. and Rice, J. R. (1973). The growth of slip surfaces in the progressive failure of over-consolidated
clay. Proc. R. Soc. Lond. A 332, 527-548.

Salamon, M. D. G. (1970). Stability, instability and design of pillar workings. /nt. J. Rock Mech. Min. Sci. 7,
613--631.

Schreyer, H. L. {1990). Analytical solutions for nonlinear strain gradient softening and localization. J. Appl.
Mech. 112(3), 522-528.

Schreyer, H. L. and Chen, Z. (1986). One-dimensional softening with localization. J. Appl. Mech. 83, 791-797.

Sture, S. and Ko, H. Y. (1978). Strain-softening of brittle geologic materials. Int. J. Num. Anal. Mech. Geomech.
2, 237-253.

Timoshenko, S. P. and Goodier, J. N. (1970). Theory of Elasticity (3rd Edn). McGraw-Hill, New York.

Tognon, G. and Cangiano, S. (1989). Fracture behaviour of high strength and very high strength concretes. Proc.
Int. Workshop on Fracture Toughness and Fracture Energy, Balkema, Rotterdam, pp. 57-72.

Vardoulakis, 1. (1980). Shear band inclination and shear modulus of sand in biaxial tests. /nt. J. Num. Anal.
Meth. Geomech. 4, 103-119.

Wawersik, W. R. and Fairhurst, C. (1970). A study of brittle rock fracture in laboratory compression experiments.
Int. J. Rock Mech. Min, Sci. 7, 561-575.

Wood, R. H. (1968). Some controversial and curious developments in the plastic theory of structures. In
Engineering Plasticity (Edited by J. Heyman and F. A. Leckie) pp. 665-691. Cambridge University Press,
Cambridge, UK.

Wood, R. H. and Roberts, E. H. (1966). Discussion of A new approach to inelastic structural design by M. G,
Lay. Proc. Inst. Civ. Engng 35, 546349,



